华为手机sd卡转内存 :把Stable Diffusion模型塞进iPhone里,做成APP一分钟出图

太平洋在线手机版 196 0

选自 liuliu.me

作者:liuliu

机器之心编译

机器之心编辑部

Stable Diffusion 可能很快就会在移动端普及华为手机sd卡转内存

在 iPhone 上运行 Stable Diffusion 到底难不难?今天我xg111企业邮局们要介绍的这篇文章,作者给出了答案:不难,而且 iPhone 还剩余 50% 的性能华为手机sd卡转内存

众所周知,每年苹果都会推出一款声称在各方面都更快、更好的新款 iPhone,这主要得益于新的视觉模型和图像传感器的快速发展华为手机sd卡转内存 。就拿拍照来说,如果回到 10 年前,你xg111net能用 iPhone 拍出高质量的图片吗,答案是太平洋在线不能,因为技术的发展是渐进式的,10 年时间,足够提高手机拍照技术。

由于技术的这种发展模式(渐进式),在一段时间里有些程序即使运行在最好的计算设备上,也几乎无法使用华为手机sd卡转内存 。但是这些带有新启用场景的新程序吸引了一些用户的注意力,人们愿意研究它。

本文的作者就是被吸引的其中之一,在过去 3 周里,作者开发了一个应用程序,可以通过 Stable Diffusion 来生成(summon)图像,然后按你喜欢的方式编辑它华为手机sd卡转内存 。该应用在最新的 iPhone 14 Pro 上生成图片仅需一分钟,使用大约 2GiB 的应用内存,另外还需要下载大约 2GiB 的初始数据才能开始使用。

应用商店链接:

这一结果引来众多网友讨论,有人开始担心手机耗电问题,并开玩笑的说:这很酷,不过这看起来是一个消耗手机电池的好方法华为手机sd卡转内存

华为手机sd卡转内存 ,做成APP一分钟出图" >

「我从来没有像现在这样开心地感受 iPhone 的热度华为手机sd卡转内存 。」

展开全文

华为手机sd卡转内存 ,做成APP一分钟出图" >

「这个寒冬,可以把手机当暖手器用了华为手机sd卡转内存 。」

华为手机sd卡转内存 ,做成APP一分钟出图" >

不过在大家调侃手机发热问题的同时,他们也给与这项工作极高的评价华为手机sd卡转内存

「这简直不可思议华为手机sd卡转内存 。在我的 iPhone SE3 上生成一张完整的图像大约需要 45 秒——这几乎和我的 M1 Pro macbook 用原始版本生成的速度一样快!」

华为手机sd卡转内存 ,做成APP一分钟出图" >

内存、硬件同时优化

这是如何做到的呢华为手机sd卡转内存 ?接下来我们看看作者的实现过程:

想要完成在 iPhone 上运行 Stable Diffusion,还能结余 50% 的性能,面临的一大挑战是需要在 6GiB RAM 的 iPhone 设备上将程序运行起来华为手机sd卡转内存 。6GiB 听起来很多,但如果你在 6GiB 设备上使用超过 2.8GiB,或在 4GiB 设备上使用超过 2GiB,iOS 就会杀死你的应用程序。

那么 Stable Diffusion 模型究竟需要多少内存来进行推理华为手机sd卡转内存

这还要从模型的结构说起华为手机sd卡转内存 。通常 Stable Diffusion 模型包含 4 个部分:1. 文本编码器,它生成文本特征向量以指导图像生成;2. 可选的图像编码器,将图像编码到潜在空间 (用于图像到图像生成);3. 降噪器模型,它从噪声中缓慢地去噪图像的潜在表示;4. 图像解码器,从潜在表示中解码图像。

第 1、第 2 和第 4 个模块在推理过程中运行一次,最大需要约 1GiB华为手机sd卡转内存 。而降噪器模型占用了大约 3.2GiB(全浮点数),并且还需要执行多次,因此作者想让该模块在 RAM 中保存得更久。

最初的 Stable Diffusion 模型需要接近 10GiB 才能执行单个图像推理华为手机sd卡转内存 。在单个输入(2x4x64x64)与输出(2x4x64x64)之间,其中夹杂着许多输出层。并不是所有层的输出都可以被立即复用,它们中一部分必须保留一些参数以供后续使用(残差网络)。

一段时间以来,研究者围绕 PyTorch Stable Diffusion 进行了一番优化,对 PyTorch 用到的 NVIDIA CUDNN 和 CUBLAS 库,他们保留了暂存空间,这些优化都是为了降低内存使用量,因此 Stable Diffusion 模型可以用低至 4GiB 的卡运行华为手机sd卡转内存

但这仍然超出了作者的预期华为手机sd卡转内存 。因此作者开始专注于苹果硬及优化。

起初作者考虑的是 3.2GiB 或 1.6GiB 半浮点数,如果不想触发苹果的 OOM(Out of Memory,指的是 App 占用的内存达到了 iOS 系统对单个 App 占用内存上限后,而被系统强杀掉的现象),作者大约有 500MiB 的空间可以使用华为手机sd卡转内存

第一个问题华为手机sd卡转内存 ,每个中间输出的大小到底是多少?

事实证明,它们中的大多数都相对较小,每个都低于 6MiB (2x320x64x64)华为手机sd卡转内存 。作者使用的框架 (s4nnc) 可以合理地将它们打包到小于 50MiB,以备复用

值得一提的是,降噪器有一个自注意机制,它以自己的图像潜在表示作为输入华为手机sd卡转内存 。在自注意力计算期间,有一个大小为 16x4096x4096 的批处理矩阵,对该矩阵应用 softmax 后,大约是 FP16 中的 500MiB,并且可以「inplace」完成,这意味着它可以安全地重写其输入而不会损坏。幸运的是,Apple 和 NVIDIA 低级库都提供了 inplace softmax 实现,然而 PyTorch 等更高级的库中没有。

那么是否真的使用 550MiB + 1.6GiB 左右的内存就能完成华为手机sd卡转内存

在 Apple 硬件上,实现神经网络后端的一个常用选择是使用 MPSGraph 框架华为手机sd卡转内存 。于是作者首先尝试使用 MPSGraph 实现了所有的神经网络操作。在 FP16 精度下峰值内存使用量大约是 6GiB,显然比预期的内存使用量多太多,这是怎么回事?

作者详细分析了原因,首先他没有按照常见的 TensorFlow 方式使用 MPSGraph华为手机sd卡转内存 。MPSGraph 需要对整个计算图进行编码,然后使用输入 / 输出张量,进而处理内部分配,并让用户提交整个图以供执行。

而作者使用 MPSGraph 的方式很像 PyTorch 的做法——当作一个操作执行引擎华为手机sd卡转内存 。为了执行推理任务,许多已编译的 MPSGraphExecutable 在 Metal 命令队列上执行,它们中的每一个都可能持有一些中间分配内存。如果一次性提交,那么所有这些命令都持有分配内存,直到完成执行。

一种解决这个问题的简单方法是调整提交速度,没有必要一次性提交所有命令华为手机sd卡转内存 。实际上,Metal 的每个队列有 64 个并发提交的限制。作者尝试改成一次提交 8 个操作,峰值内存就降低到了 4GiB。

然而,这仍然比 iPhone 能承受的多 2 GiB华为手机sd卡转内存

为了使用 CUDA 计算自注意力,原始 Stable Diffusion 代码实现中有一个常见技巧:使用置换而不是转置华为手机sd卡转内存 。这个技巧很有效,因为 CUBLAS 可以直接处理置换的跨步(strided)张量,避免使用专用内存来转置张量。

但是 MPSGraph 没有跨步张量支持,一个置换的张量无论如何都会在内部被转置,这需要中间分配内存华为手机sd卡转内存 。通过显式转置,分配将由更高级别的层处理,避免了 MPSGraph 内部效率低下。利用这个技巧,内存使用量将接近 3GiB。

事实证明,从 iOS 16.0 开始,MPSGraph 不能再为 softmax 做出最优分配决策华为手机sd卡转内存 。即使输入和输出张量都指向相同的数据,MPSGraph 也会分配一个额外的输出张量,然后将结果复制到指向的位置。

作者发现使用 Metal Performance Shaders 替代方案完全符合要求,并将内存使用量降至 2.5GiB,而不会出现任何性能下降华为手机sd卡转内存

另一方面,MPSGraph 的 GEMM 内核需要内部转置华为手机sd卡转内存 。显式转置在此也无济于事,因为这些转置不是更高级别层的「inplace」操作,对于特定的 500MiB 大小的张量,这种额外的分配是不可避免的。通过切换到 Metal Performance Shaders,项目作者又回收了 500MiB,性能损失约为 1%,最终将内存使用量减到了理想的 2GiB。

参考链接:

/

标签: 出图 做成 Diffusion 模型 分钟

抱歉,评论功能暂时关闭!